Frequency Domain Subspace Identification Using Nuclear Norm Minimization and Hankel Matrix Realizations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear Norm Minimization via Active Subspace Selection

We describe a novel approach to optimizing matrix problems involving nuclear norm regularization and apply it to the matrix completion problem. We combine methods from non-smooth and smooth optimization. At each step we use the proximal gradient to select an active subspace. We then find a smooth, convex relaxation of the smaller subspace problems and solve these using second order methods. We ...

متن کامل

Hammerstein system identification using nuclear norm minimization

This paper presents a new method for the identification of Hammerstein systems. The parameter estimation problem is formulated as a rank minimization problem by constraining a finite dimensional time dependency between signals. Due to the unknown intermediate signal, the rank minimization problem cannot be solved directly. Thus, the rank minimization problem is reformulated as an intermediate s...

متن کامل

N2SID: Nuclear Norm Subspace Identification

The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed ...

متن کامل

Scalable Nuclear-norm Minimization by Subspace Pursuit Proximal Riemannian Gradient

Trace-norm regularization plays a vital role in many learning tasks, such as low-rank matrix recovery (MR), and low-rank representation (LRR). Solving this problem directly can be computationally expensive due to the unknown rank of variables or large-rank singular value decompositions (SVDs). To address this, we propose a proximal Riemannian gradient (PRG) scheme which can efficiently solve tr...

متن کامل

Factor Matrix Nuclear Norm Minimization for Low-Rank Tensor Completion

Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix rank minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2014

ISSN: 0018-9286,1558-2523

DOI: 10.1109/tac.2014.2351731