Frequency Domain Subspace Identification Using Nuclear Norm Minimization and Hankel Matrix Realizations
نویسندگان
چکیده
منابع مشابه
Nuclear Norm Minimization via Active Subspace Selection
We describe a novel approach to optimizing matrix problems involving nuclear norm regularization and apply it to the matrix completion problem. We combine methods from non-smooth and smooth optimization. At each step we use the proximal gradient to select an active subspace. We then find a smooth, convex relaxation of the smaller subspace problems and solve these using second order methods. We ...
متن کاملHammerstein system identification using nuclear norm minimization
This paper presents a new method for the identification of Hammerstein systems. The parameter estimation problem is formulated as a rank minimization problem by constraining a finite dimensional time dependency between signals. Due to the unknown intermediate signal, the rank minimization problem cannot be solved directly. Thus, the rank minimization problem is reformulated as an intermediate s...
متن کاملN2SID: Nuclear Norm Subspace Identification
The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed ...
متن کاملScalable Nuclear-norm Minimization by Subspace Pursuit Proximal Riemannian Gradient
Trace-norm regularization plays a vital role in many learning tasks, such as low-rank matrix recovery (MR), and low-rank representation (LRR). Solving this problem directly can be computationally expensive due to the unknown rank of variables or large-rank singular value decompositions (SVDs). To address this, we propose a proximal Riemannian gradient (PRG) scheme which can efficiently solve tr...
متن کاملFactor Matrix Nuclear Norm Minimization for Low-Rank Tensor Completion
Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix rank minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2014
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2014.2351731